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Abstract We study relaxation towards a stationary out-of-equilibrium state by analyzing a
one-dimensional stochastic process followed by a particle accelerated by an external field
and propagating through a thermal bath. The effect of collisions is described within one-
dimensional formulation of Boltzmann’s kinetic theory. We present analytical solutions for
the Maxwell gas and for the very hard particle model. The exponentially fast relaxation of
the velocity distribution towards the stationary form is demonstrated. In the reference frame
moving with constant drift velocity the hydrodynamic diffusive mode is shown to govern the
distribution in the position space. We show that the exact value of the diffusion coefficient
for any value of the field is correctly predicted by the Green-Kubo autocorrelation formula
generalized to the stationary state.

Keywords Out-of-equilibrium · Stationary state · Boltzmann equation · Relaxation
processes · Hydrodynamic mode · Diffusion

1 Introduction

The present paper is devoted to the study of a stochastic process followed by a particle
moving through a scattering thermal bath while accelerated by an external field. The field
prevents the particle from acquiring the Maxwell distribution of the bath. Our aim here is
not only to establish the precise form of the stationary velocity distribution, as it was e.g. the
case in the analysis presented in Ref. [1], but also to answer the physically relevant question
of the dynamics of approach towards the long-time asymptotic state. The evolution of the
distribution in position space will be thus also discussed.

The propagation of charged particles immersed in a scattering medium, and coupled to
an external field, has been extensively studied for many decades within Boltzmann’s kinetic
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theory. For example, an important case is the motion of electron swarms through the at-
mosphere (for a review see e.g. Ref. [2]). Another example is the classical Lorentz model
of the electronic conductivity of metals [3, 4]. Whereas in three dimensions approximations
are usually unavoidable, one can expect to derive rigorous analytic results by considering
the corresponding one-dimensional processes. In fact, a constant external field imposes one-
dimensional aspect to the dynamics by accelerating the charged particle always along the
same fixed direction. It was thus not surprising that, in the case of the Lorentz model, the pre-
dictions of its one-dimensional version turned out to be essentially correct when compared
with the three-dimensional case. For instance, the same power law was found to govern the
unbounded absorption of kinetic energy from the external field in one and in three dimen-
sions [4]. This provides a real physical motivation for detailed studies of one-dimensional
models.

We consider here a stochastic dynamics described by the kinetic equation

(
∂

∂t
+ v

∂

∂r
+ a

∂

∂v

)
f (r, v; t) = v

1−γ

int ρ

∫
dw|v − w|γ [f (r,w; t)φ(v) − f (r, v; t)φ(w)]

(1)
obtained by copying the structure of the Boltzmann equation in one dimension (see e.g.
Ref. [5]). Here f (r, v; t) is the probability density for finding the propagating particle at
point r with velocity v at time t . The thermal bath particles are not coupled to the external
field. Before binary encounters with the accelerated particle they are assumed to be in an
equilibrium state with uniform temperature T and density ρ

ρφ(v) = ρ

√
m

2πkBT
exp

(
− mv2

2kBT

)
= ρ

vth

√
2π

exp

[
−1

2

(
v

vth

)2
]

. (2)

Here φ(v) is the Maxwell distribution, and

vth =
√

kBT

m
(3)

denotes the corresponding thermal velocity. The differential operator on the left-hand side
of (1) generates motion with a constant acceleration a. The accelerated motion is perma-
nently perturbed by instantaneous exchanges of velocities with thermalized bath particles.
This is modeled by the Boltzmann type gain and loss collision term on the right hand side of
equation (1), which accounts for elastic encounters between equal mass particles. The col-
lision frequency depends therein on the absolute relative velocity |v − w| through a simple
power law with exponent γ . Finally vint is some characteristic velocity of the underlying
interparticle interaction.

In the case of hard rods (γ = 1) the factor |v − w| is the main source of difficulties in
the attemps to rigorously determine the evolution of f (r, v; t), since it prevents the effective
use of Laplace and Fourier transformations. It was thus quite remarkable that a stationary
velocity distribution could be analytically determined in that case, leading in particular to an
explicit expression for the current at any value of the external acceleration [1]. In that case,
kinetic equation (1) has been solved exactly only at zero temperature where φ(v)|T =0 =
δ(v) [6]. Also, when φ(v) is replaced by the distribution [δ(v − v0) + δ(v + v0)]/2 with a
discrete velocity spectrum ±v0, an explicit analytic solution has been derived and analyzed
in [7] and [8]. The physically relevant conclusions from those works can be summarized as
follows
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(i) the approach to the asymptotic stationary velocity distribution is exponentially fast
(ii) in the reference system moving with average velocity, the hydrodynamic diffusion

mode governs the spreading of the distribution in position space
(iii) the Green-Kubo autocorrelation formula for the diffusion coefficient applies in the

non-equilibrium steady state

Our aim is to show that the general features (i)–(iii) persist when φ(v) is the Maxwell
distribution with temperature T > 0. We stress that, at the moment, there is no general theory
for describing the corresponding mechanisms at work. Whereas the approach to equilibrium
states is rather well understood, the relaxation towards out-of-equilibrium stationary states
is an open problem. In particular, the generalization of Green-Kubo formula for general
out-of-equilibrium situations has not been demonstrated.

In the present study, we restrict the analysis to cases γ = 0 and γ = 2, which are much
simpler than the hard-rod one. Indeed, it turns out that the Fourier-Laplace transformation
can then be effectively used to solve the initial value problem for (1). The simplifications
occurring when γ = 0 or γ = 2 have been already exploited in other studies: for recent
applications to granular fluids, see e.g. [9–11] and references quoted therein.

In terms of dimensionless variables

w = v/vth, x = rρ (vth/vint)
γ−1 , τ = tρvth (vth/vint)

γ−1 , (4)

the kinetic equation (1) takes the form

(
∂

∂τ
+ w

∂

∂x
+ ε

∂

∂w

)
F(x,w; τ) =

∫
du|w − u|γ [F(x,u; τ)
(w) − F(x,w; τ)
(u)],

(5)
where 
(w) is the dimensionless normalized Gaussian


(w) = 1√
2π

e−w2/2, (6)

and ε is the dimensionless parameter

ε = (vth/vint)
1−γ amρ−1

kBT
(7)

proportional to the ratio between the energy amρ−1 provided to the particle on a mean free
path, and thermal energy kBT . That parameter can thus be looked upon as a measure of the
strength of the field. Integration of (5) over the position space yields the kinetic equation for
the velocity distribution

G(w; τ) =
∫

dxF(x,w; τ),

which reads
(

∂

∂τ
+ ε

∂

∂w

)
G(w; τ) =

∫
du|w − u|γ [G(u; τ)
(w) − G(w; τ)
(u)]. (8)

The paper is organized as follows. In Sect. 2, we consider the so-called Maxwell gas
(γ = 0). The explicit solution of the kinetic equation (5) enables a thorough discussion of
the approach to the stationary state, together with a study of the structure of the stationary
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velocity distribution. In Sect. 3, we proceed to a similar analysis for the very hard parti-
cle model (γ = 2). Sect. 4 contains conclusions. Some calculations have been relegated to
Appendices.

2 The Maxwell Gas

We consider here the simple version γ = 0 of (5). One usually then refers to the Maxwell
gas dynamics, in which the collision frequency does not depend on the speed of approach
(see e.g. [12]). This case can be viewed upon as a very crude approximation to the hard rod
dynamics (γ = 1) obtained by replacing the relative speed |v − c| of colliding particles by
constant thermal velocity vth, while vint is identified with vth. Here, kinetic equation (5) takes
the form

(
∂

∂τ
+ w

∂

∂x
+ ε

∂

∂w

)
F(x,w; τ) =

∫
du[F(x,u; τ)
(w) − F(x,w; τ)
(u)]

= M0(x; τ)
(w) − F(x,w; τ), (9)

where M0(x; τ) denotes the zeroth moment

M0(x; τ) =
∫

duF(x,u; τ). (10)

Equation (9) can be conveniently rewritten as an integral equation

F(x,w; τ) = e−τF (x − wτ + ετ 2/2,w − ετ ;0)

+
∫ τ

0
dηe−η
(w − εη)M0(x − wη + εη2/2; τ − η), (11)

with an explicit dependence on the initial condition F(x,w;0). Integration of (11) over x

yields

G(w; τ) =
∫

dxF(x,w; τ) = e−τGin(w − ετ) + N0

∫ τ

0
dηe−η
(w − εη), (12)

where Gin(w) = G(w;0) is the initial condition, and N0 = ∫
dw

∫
dxF(x,w; τ) =∫

dwG(w; τ) is the conserved normalization factor.

2.1 Stationary Solution and Relaxation of the Velocity Distribution

Putting N0 = 1 in formula (12) yields the evolution law for the normalized velocity distrib-
ution

G(w; τ) =
∫

dxF(x,w; τ) = e−τGin(w − ετ) +
∫ τ

0
dηe−η
(w − εη). (13)

The first term on the right hand side of (13) describes the decaying memory of the initial
distribution: Gin(w) propagates in the direction of the field with constant velocity ε, while
its amplitude is exponentially damped. Clearly, for times τ � 1 that term can be neglected.
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Fig. 1 Stationary velocity
distribution Gst(w) for three
values of ε

The second term in formula (13) describes the approach to the asymptotic stationary
distribution

Gst(w) = G(w;∞) =
∫ ∞

0
dηe−η
(w − εη)

= 1

2ε
exp

(
1

2ε2
− w

ε

)(
1 + Erf

(
wε − 1

ε
√

2

))
, (14)

where

Erf(ξ) = 2√
π

∫ ξ

0
du exp(−u2)

is the familiar error function. It is interesting to compare the decay-law of Gst(w) at large
velocities, to that corresponding to the case of hard-rod collisions. Using expression (14) we
find the asymptotic formula

Gst(w) ∼ 1

ε
exp

(
1

2ε2
− w

ε

)
(15)

when w → +∞. In contradistinction to the hard-rod case governed by an ε-dependent
Gaussian law (see [1]) we find here a purely exponential decay. The thermal bath is unable
to impose via collisions its own Gaussian decay because of insufficient collision frequency.
The replacement of the relative speed in the Boltzmann collision operator by thermal veloc-
ity implies thus qualitative changes in the shape of the stationary velocity distribution. The
plot of Gst(w) for different values of ε is shown in Fig. 1.

Basic properties (i)–(iii) discussed in the Introduction turn out to be valid. Indeed, the
inequality

Gst(w) −
∫ τ

0
dηe−η
(w − εη) =

∫ ∞

τ

dηe−η
(w − εη) <
e−τ

ε
(16)

displays an uniform exponentially fast approach towards the stationary state. In particular,
using formula (13), we find that the average velocity 〈w〉(τ ) approaches the asymptotic
value

〈w〉st = ε (17)
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according to

〈w〉(τ ) =
∫

dwwG(w; τ) = ε + e−τ [〈w〉in − ε]. (18)

We encounter here an exceptional situation where the linear response is exact for any value
of the external field.

Equation (12) with N0 put equal to zero can be used for the evaluation of the time-
displaced velocity autocorrelation function


(τ) = 〈[w(τ) − 〈w〉st][w(0) − 〈w〉st]〉st, (19)

where 〈. . .〉st denotes the average over stationary state (14). The calculation presented in
Appendix B provides the formula


(τ) = e−τ [1 + ε2], (20)

which yields a remarkably simple field dependence of the diffusion coefficient

D(ε) =
∫ ∞

0
dτ
(τ) = 1 + ε2. (21)

2.2 Relaxation of Density: Appearence of a Hydrodynamic Mode

Let us turn now to the analysis of the evolution of the normalized density n(x; τ) = M0(x; τ)

in position space. It turns out that one can solve the complete integral equation (11) by
applying to both sides Fourier and Laplace transformations. If we set

F̃ (k,w; z) =
∫ ∞

0
dτe−zτ

∫
dxe−ikxF (x,w; τ), (22)

we find

F̃ (k,w; z) =
∫ ∞

0
dτexp

[
−ik

(
wτ − ε

τ 2

2

)
− (z + 1)τ

]

×
{
F̂in(k,w − ετ) + ñ(k; z)
(w − ετ)

}
, (23)

where ñ(k; z) is the Fourier-Laplace transform of n(x; τ), and

F̂in(k,w) =
∫

dxe−ikxF (x,w;0)

denotes the spatial Fourier transform of the initial condition. Equation (23) when integrated
over the velocity space yields the formula

ñ(k; z) = 1

ζ(k; z)
∫

dw

∫ ∞

0
dτexp

[
−ik

(
wτ − ε

τ 2

2

)
− (z + 1)τ

]
F̂in(k,w − ετ) (24)

with

ζ(k; z) = 1 −
∫ ∞

0
dτexp

[
−(z + 1)τ − (ikε + k2)

τ 2

2

]
. (25)
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The insertion of (24) into (23) provides a complete solution for F̃ (k,w; z) corresponding to
a given initial condition.

Formula (24) shows that the time-dependence of the spatial distribution is defined by
roots of the function ζ(k; z). In order to find the long-time hydrodynamic mode zhy(k), we
have to look for the root of ζ(k; z) which approaches 0 when k → 0. If we assume the
asymptotic form

zhy(k) = c1k + c2k
2 + o(k2) when k → 0,

we find a unique self-consistent solution to equation ζ(k; z) = 0 of the form

zhy(k) = −iεk − (1 + ε2)k2 + o(k2) = −iεk − D(ε)k2 + o(k2). (26)

It has the structure of a propagating diffusive mode. It is important to note that the diffusion
coefficient D(ε) equals (1+ ε2) in accordance with the Green-Kubo result (21). We thus see
that, in the reference system moving with constant velocity ε, a classical diffusion process
takes place in position space.

It has been argued in the literature that, in general, zhy(k) is not an analytic function of
k at k = 0 (see e.g. Ref. [13]). Here, that question can be precisely investigated as follows.
According to the integral expression (25) of ζ(k; z), the hydrodynamic mode is a function
of ξ = ikε + k2. By combining differentiations with respect to ξ under the integral sign with
integration by parts, we find that zhy(ξ) satisfies the second order differential equation

ξ
d2z2

hy

dξ 2
= 1 + dzhy

dξ
. (27)

Then, since zhy(0) = 0, we find that zhy(ξ) can be formally represented by an infinite entire
series in ξ ,

zhy(ξ) =
∞∑

n=1

cnξ
n, (28)

with c1 = −1, c2 = 1 and

|cn+1| ≥ 2n−1n! for n ≥ 2.

Thus, the radius of convergence of Taylor series (28) is zero, so ξ = 0 is a singular point
of function zhy(ξ), as well as k = 0 is a singular point of function zhy(k). The nature of
that singularity can be found by rewriting the root equation defining zhy(ξ) as the implicit
equation

1 − Erf

(
zhy + 1√

2ξ

)
=

√
2ξ

π
exp

(
− (zhy + 1)2

2ξ

)
. (29)

The introduction of function
√

ξ requires to define cut-lines ending at points k = 0 and
k = −iε which are the two roots of equation ξ(k) = 0. Since the integral in the r.h.s. of
expression (25) diverges for k imaginary of the form k = iq with q > 0 or q < −ε, it is
natural to define such cut-lines as [i0, i∞[ and ]−i∞,−iε]. The corresponding choice of
determination for

√
ξ is defined by

√
ξ(k+) = i

√
qε + q2 for k+ = 0+ + iq with q > 0,

where
√

qε + q2 is the usual real positive square root of the real positive number (qε + q2).
Notice that, when complex variable k makes a complete tour around point k = 0 starting
from k+ = 0+ + iq on one side of the cut-line and ending at k− = 0− + iq on the other side
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(with vanishing difference k+ − k−),
√

ξ(k) changes sign from
√

ξ+ to
√

ξ− = −√
ξ+ with

obvious notations. As shown by adding both implicit equations (29) for k+ and k− respec-
tively, z+

hy does not reduce to z−
hy. The difference (z+

hy − z−
hy) is of order exp(−1/(2|k|ε)), so

k = 0 is an essential singularity.

3 Very Hard Particles

Another interesting case is that of the so-called very hard particle model, where the collision
frequency is proportional to the kinetic energy of the relative motion of the colliding pair.
The corresponding exponent in the collision term of the Boltzmann equation (1) is now
γ = 2. This allows us to simplify the resolution of the kinetic equation. Owing to this fact,
the very hard particle model, similarly to the Maxwell gas, has been studied in numerous
works (see e.g. [14, 15], and references given therein).

Using dimensionless variables (4), we thus write the kinetic equation as

(
∂

∂τ
+ w

∂

∂x
+ ε

∂

∂w

)
F(x,w; τ)

=
∫

du|w − u|2[F(x,u; τ)
(w) − F(x,w; τ)
(u)]
= [w2M0(x; τ) − 2wM1(x; τ) + M2(x; τ)]
(w) − (w2 + 1)F (x,w; τ), (30)

where the moments Mj(x; τ) (j = 1,2, . . .) are defined by

Mj(x; τ) =
∫

dwwjF (x,w; τ). (31)

The evolution equation of the velocity distribution G(w; τ) becomes

(
∂

∂τ
+ ε

∂

∂w

)
G(w; τ) = [N2(τ ) − 2wN1(τ ) + w2N0]
(w) − (w2 + 1)G(w; τ), (32)

with the integrated moments

Nj(τ) =
∫

dxMj(x; τ), j = 0,1,2. (33)

Notice that the integrated zeroth moment does not depend on time since the evolution con-
serves the initial normalization condition

N0(τ ) =
∫

dw

∫
dxF(x,w; τ) = N0.

Hence, when F(x,w; τ) is a normalized probability density N0(τ ) = N0 = 1.
The simplification related to the choice γ = 2, and more generally when γ is an even

integer, concerns the collision term in the general kinetic equation (1) which can be ex-
pressed in such cases in terms of a finite number of moments of the distribution function.
The resolution of that equation becomes then straightforward within standard methods (see
Appendix A).
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3.1 Laplace Transform of the Velocity Distribution

The expression for the Laplace transform of the normalized velocity distribution follows
directly from the general formula (80) derived in Appendix A by putting k = 0, and choosing
M̃0(0, z) = Ñ0(z) = 1/z. Within definition

S(w; z) = (z + 1)w + w3

3
(34)

for the function S(k,w; z) evaluated at k = 0 (see definition (78)), we find

εG̃(w; z) = ε

z

(w) +

∫ w

−∞
du exp{[S(u; z) − S(w; z)]/ε}

{
Gin(u)

+
[
Ñ2(z) − 2uÑ1(z) + (εu − z − 1)

z

]

(u)

}
. (35)

The two functions Ñ1(z) and Ñ2(z) satisfy the system of equations

0 = A
(in)

00 (0; z) + [Ñ2(z) − (z + 1)/z]A00(0; z) + [ε/z − 2Ñ1(z)]A01(0; z),
εÑ1(z) = A

(in)

10 (0; z) + [Ñ2(z) − (z + 1)/z]A10(0; z) + [ε/z − 2Ñ1(z)]A11(0; z)
(36)

which is identical to (84) taken at k = 0, while

Ajl(0; z) =
∫

dw

∫ w

−∞
du exp{[S(u; z) − S(w; z)]/ε}wjul
(u). (37)

Analogous formula holds for A
(in)
j l (0; z) with the Maxwell distribution 
(u) replaced by the

initial condition G(u;0) = Gin(u). Once system (36) has been solved, the insertion of the
resulting expressions for Ñ1(z) and Ñ2(z) into formula (35) yields eventually an explicit
solution of the kinetic equation for the velocity distribution

G̃(w; z) = 
(w)

z
+ 1

ε

∫ w

−∞
du exp {[S(u; z) − S(w; z)]/ε}

× {Gin(u) + [Aε(z)u − Bε(z)]
(u)} . (38)

With the shorthand notations Ajl(z) = Ajl(0; z) and A
(in)
j l (z) = A

(in)
j l (0; z), the formulae for

coefficients Aε(z) and Bε(z) read

Aε(z) = 1

�(z)

[
ε2

z
A00(z) − 2A00(z)A

(in)

10 (z) + 2A10(z)A
(in)

00 (z)

]
(39)

and

Bε(z) = 1

�(z)

[
ε2

z
A01(z) + εA

(in)

00 (z) + 2A11(z)A
(in)

00 (z) − 2A01(z)A
(in)

10 (z)

]
, (40)

where �(z), in accordance with the definition given in (86), is

�(z) = εA00(z) + 2 (A00(z)A11(z) − A10(z)A01(z)) . (41)
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3.2 Stationary Solution

At large times, τ → ∞, we expect the velocity distribution to reach some stationary state
Gst(w) = G(w;∞). This can be easily checked by investigating the behaviour of G̃(w; z)
in the neighbourhood of z = 0 at fixed velocity w.

All integrals over u in formula (38) do converge for any complex value of z. Moreover,
all their derivatives with respect to z are also well defined, as shown by differentiation un-
der the integral sign. Thus, such integrals are entire functions of z. The sole quantities in
expression (38) which become singular at z = 0 are the coefficients Aε(z) and Bε(z), and
obviously the term 
(w)/z. In fact, both Aε(z) and Bε(z) exhibit simple poles at z = 0.
Hence, the stationary solution of the kinetic equation (32) does emerge when τ → ∞, and
it is given by the residue of the simple pole of G̃(w; z) at z = 0, namely

Gst(w) = 
(w)+ ε

�(0)

∫ w

−∞
du exp

[
S(u;0) − S(w;0)

ε

]
[A00(0)u−A01(0)]
(u). (42)

In that expression, Aij (0) and �(0) are the non-zero values at z = 0 of the analytic func-
tions Aij (z) = Aij (0; z) and �(z) = �(0; z). Formula (42) does not depend on initial condi-
tion Gin. All initial conditions evolve towards the same unique stationary distribution (42).
It can be checked that the direct resolution of the static version of kinetic equation (32)
obtained by setting ∂G/∂τ = 0 does provide formula (42).

Since the external field accelerates the particle, the stationary solution is asymmetric with
respect to the reflection w → −w, and positive velocities are favoured. This leads to a finite
current

〈w〉st =
∫

dwwGst(w) = ε

�(0)
[A00(0)A11(0) − A01(0)A10(0)]. (43)

The asymptotic expansion at large velocities of Gst(w), inferred from formula (42), reads

Gst(w) = 1√
2π

e−w2/2

[
1 + ε2A00(0)

�(0)w
+ O

(
1

w2

)]
when |w| → ∞. (44)

Therefore, the external field does not influence the leading large-velocity behaviour of
Gst(w), which is identical to that of the thermal bath. Its effects only arise in the first cor-
rection to the leading behaviour which is smaller by a factor of order 1/w. The station-
ary distribution is drawn in Fig. 2 for several increasing field strengths, ε = 1, ε = 10 and
ε = 100.

Fig. 2 Stationary velocity
distribution Gst(w) for three
values of ε
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Let us study now the limit ε → 0 which corresponds to a weak external field. The main
contributions to the integrals over u in (38) arise from the region close to w. That observation
motivates the use of a new integration variable y = (w −u)/ε. The Taylor expansions of the
resulting integrands in powers of ε generate then entire series in ε, the first terms of which
read ∫ w

−∞
duu
(u) exp

[
S(u;0) − S(w;0)

ε

]
= ε

w
(w)

1 + w2
+ O(ε2) (45)

and ∫ w

−∞
du
(u) exp

[
S(u,0) − S(w,0)

ε

]
= ε


(w)

1 + w2
+ O(ε2). (46)

Consequently, functions Aij (0) and �(0) can be also represented by power series in ε as
they are obtained by calculating appropriate moments of expansions (45) and (46) over the
velocity space. The corresponding small-ε expansion of the stationary velocity distribution
reads

Gst(w) = 
(w) + ε

[
bw

1 + w2

]

(w) + O(ε2), (47)

where

b =
[

1 + 2
∫

dw
w2

1 + w2

(w)

]−1

.

Of course, at ε = 0, Gst(w) reduces to the Maxwell distribution. The first correction is of
order ε, as expected from linear response theory. The corresponding current (42) reduces to

〈w〉st = σε + O(ε2), (48)

where the conductivity σ is given by

σ = 1

2
(1 − b). (49)

It will be shown in the sequel that σ = D0 = D(ε = 0), where D(ε) is the diffusion coeffi-
cient given by the Green-Kubo formula.

Consider now the strong field limit ε → ∞. The corresponding behaviours of Aij (0) and
�(0) are derived from the integral representations obtained in Appendix C. We then find at
fixed w

Gst(w) = ε−1/3∫ ∞
0 dy exp(−y3/3)

∫ w

−∞
du
(u) exp

[
S(u,0) − S(w,0)

ε

]
+ O(ε−2/3). (50)

For w of order 1, the dominant term in the large-ε expansion of the integral in (50) reduces
to ∫ w

−∞
du
(u) = 1

2

(
1 + Erf

(
w√

2

))

and thus varies from 0 to 1 around the origin w = 0. For larger values of the velocity, w ∼
ε1/3, that integral behaves as exp(−w3/(3ε). The next term in the expansion (50) remains
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Fig. 3 Average current 〈w〉st as
a function of ε. The dashed line
represents the linear Kubo term
in the small-ε expansion (48)
with conductivity σ 
 0.2039.
The dotted line describes
asymptotics formula (52) with
31/3
(2/3)/
(1/3) 
 0.7290
valid in the limit ε → ∞

of order ε−2/3. Thus, when ε → ∞ at fixed ε−1/3w the stationary solution is given by

Gst(w) ∼ θ(w)
ε−1/3∫ ∞

0 dy exp(−y3/3)
exp

[−(ε−1/3w)3/3
]
, (51)

where θ is the Heaviside step function. The whole distribution is shifted towards high ve-
locities w ∼ ε1/3, so that the resulting current (43) is of the same order of magnitude, i.e.

〈w〉st ∼ 31/3
(2/3)


(1/3)
ε1/3 when ε → ∞, (52)

where 
 is the Euler Gamma function. That behavior can be recovered within the following
simple interpretation. At strong fields, the average velocity of the particle becomes large
compared to the thermal velocity of scatterers. Since at each collision the particle exchanges
its velocity with a thermalized scatterer, the variation of particle velocity between two suc-
cessive collisions is of the order of 〈v〉st. On the other hand, in the stationary state the same
velocity variation is due to the acceleration a coming from the external field, so it is of the
order aτcoll where τcoll is the mean time between two successive collisions. This time can
be reasonably estimated as the inverse collision frequency for a relative velocity |v − c| of
order 〈v〉st. The consistency of those estimations requires the relation

〈v〉st ∼ a
vint

ρ〈v〉2
st

(53)

which indeed implies the ε1/3-behaviour (52) of the average velocity in dimensionless units.
Contrary to the Maxwell case where the current remains linear in the applied field, here the
current deviates from its linear-response form when the field increases: it grows more slowly
because collisions are more efficient in dissipating the energy input of the field. In Fig. 3,
we plot 〈w〉st as a function of ε.

3.3 Relaxation Towards the Stationary Solution

Let us study now the relaxation of the velocity distribution G(w; τ) towards the station-
ary solution Gst(w). The decay of [G(w,τ) − Gst(w)] when τ → ∞ is controlled by the
singularities of G̃(w; z) in the complex plane, different from the pole at z = 0. As already
mentioned, all integrals in expression (38) are entire functions of z, so the singularities at
z �= 0 arise only in the coefficients Aε(z) and Bε(z). Thus, the first important conclusion is
that the relaxation is uniform for the whole velocity spectrum.
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According to expressions (39) and (40) defining Aε(z) and Bε(z) respectively, the singu-
larities of those coefficients at points z �= 0, correspond to zeros of the function �(z) given
by expression (41). Since the analytic functions Aij (z) and �(z) do not depend on initial
condition Gin, the relaxation is an intrinsic dynamical process, as expected.

After some algebra detailed in Appendix C, we find that �(z) reduces to the Laplace
transform

�(z) = ε2
∫ ∞

0
dyfε(y) exp(−zy) (54)

of the real, positive, and monotonously decreasing function

ε2fε(y) = ε2(1 + 3y)

(1 + y)(1 + 2y)1/2
exp

(
−y − ε2 y3(2 + y)

6(1 + 2y)

)
. (55)

Owing to the fast decay of fε(y) the integral (54) converges for any z, so �(z) is an entire
function of z. Also, the monotonic decay of fε(y) and its positivity imply some general
properties for the roots of �(z). First of all, �(z) cannot vanish for �(z) ≥ 0. Moreover,
as �(z) is strictly positive for z real, the zeros of �(z) appear in complex conjugate pairs,
while they are isolated with strictly negative real parts and nonvanishing imaginary parts.
Consequently, the long-time relaxation of the velocity distribution is governed by the pair
of zeros which is closest to the imaginary axis. Noting them as z± = −λ ± iω with ω �= 0
and 0 < λ, we conclude that G(w; τ) relaxes towards Gst(w) via exponentially damped
oscillations

G(w; τ) − Gst(w) ∼ C(w) cos[ωτ + η(w)] exp(−λτ), when τ → ∞, (56)

where C(w) and η(w) are an amplitude and a phase respectively. It should be noticed that
both functions C(w) and η(w) depend on initial conditions.

At a given value of ε, the zeros z± are found by solving numerically the equation
�(z±) = 0. In the weak- or strong-field limits, we can derive asymptotic formulae for such
zeros as follows. First, as indicated by numerically computing z± for small values of ε, z±
collapse to z0 = −1 when ε → 0. The corresponding asymptotical behaviour can be derived
by noting that, for z close to z0, the leading contributions to �(z) in integral (54) arise from
large values of y. Then, we set y = ξ/ε2/3 and z = −1 + sε2/3, which provide

�(−1 + sε2/3) ∼ 3ε5/3

√
2

∫ ∞

0
dξξ−1/2 exp(−sξ − ξ 3/12) (57)

when ε → 0 at fixed s. By numerical methods, we find the pair of complex conjugated zeros
s±

0 of integral ∫ ∞

0
dξξ−1/2 exp(−sξ − ξ 3/12)

which are the closest to the imaginary axis. Therefore, when ε → 0, damping factor λ(ε)

goes to 1 according to

λ(ε) = 1 − �(s±
0 )ε2/3 + o(ε2/3) (58)

with �(s±
0 ) 
 −1.169, while frequency ω(ε) vanishes as 
(s+

0 )ε2/3 with 
(s+
0 ) 
 2.026.

Notice that for fixed z, not located on the real half-axis ]−∞,−1], �(z) behaves as

�(z) ∼ ε2�0(z) (59)
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Fig. 4 Damping factor λ(ε) as a
function of ε. The dashed and
dotted lines represent the
asymptotics behaviours (58) and
(63) at small and large ε

respectively

when ε → 0, with

�0(z) =
√

π

2(z + 1)
e(z+1)/2

[
1 − Erf

(√
(z + 1)/2

)]

×
[
3 − √

2π(z + 1)e(z+1)/2
(

1 − Erf
(√

(z + 1)/2
))]

. (60)

Here,
√

(z + 1)/2 is defined as the usual real positive square root
√

(x + 1)/2 for real z = x

belonging to the half axis x > −1, while the complementary half-axis z = x ≤ −1 is a
cut-line ending at the branching point z = −1. That point is the singular point of 1/�0(z)

closest to the imaginary axis, as strongly suggested by a numerical search of the zeros of
�0(z). Therefore, both λ(ε) and ω(ε) are continuous functions of ε at ε = 0 with λ(0) = 1
and ω(0) = 0. At ε = 0, the exponentially damped oscillating decay (56) becomes an ex-
ponentially damped monotonic decay multiplied by power-law t−3/2. That power-law arises
from the presence of a singular term of order

√
(z + 1)/2 in the expansion of G̃(w; z) around

the branching point z = −1.
When ε → ∞, the zeros of �(z) are obtained by simultaneously changing y to ξ/ε2/3 in

the integral (54) and by rescaling z as ε2/3s. This provides

�(ε2/3s) ∼ ε4/3�∞(s) when ε → ∞ at fixed s, (61)

with

�∞(s) =
∫ ∞

0
dξ exp

(−sξ − ξ 3/3
)
. (62)

Therefore, when ε → ∞, z± behave as z± ∼ ε2/3s±∞, where s±∞ are the zeros of �∞(s) clos-
est to the imaginary axis. The corresponding large-ε asymptotical behaviour of the damping
factor λ(ε) is

λ(ε) = −�(s±
∞)ε2/3 + o(ε2/3) (63)

with �(s±∞) 
 −2.726, while frequency ω(ε) diverges as 
(s+∞)ε2/3 with 
(s+∞) 
 6.260.
Notice that the relaxation time λ−1(ε) goes to zero as ε−2/3, like the average time between
collisions τcoll ∼ 〈v〉st/a used in our simple heuristic derivation of the ε-dependence of the
stationary current in the strong field limit. In Fig. 4, we draw the damping factor λ(ε) as a
function of ε.
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3.4 Relaxation of Density in Position Space

In Appendix A we derive an explicit formula for the zeroth moment M̃0(k; z) of the distrib-
ution F̃ (k,w; z) which contains all information on the evolution of the spatial density of the
propagating particle. The formula (85) clearly reveals the presence of a hydrodynamic pole
in M̃0(k; z), namely the root of equation

z + (k2 + iεk)U(k; z) = 0, (64)

where

U(k; z) = A11(k; z)A00(k; z) − A10(k; z)A01(k; z)
εA00(k; z) + 2[A11(k; z)A00(k; z) − A10(k; z)A01(k; z)] . (65)

If we consider the small-k limit and if we assume the asymptotic form

zhy(k) = −ick − D(ε)k2 + o(k2) (66)

for the hydrodynamic root, we find immediately from (64) the formula

c = εU(0;0). (67)

This shows that the mode propagates with the average stationary velocity 〈w〉st = εU(0;0)

derived in expression (43).
In order to infer the formula for the diffusion coefficient D(ε), it is necessary to calculate

the term linear in variable k in the expansion of function U(k; z) at z = −ick. Indeed, (64)
implies the equality

D(ε) = U(0;0) + iε
d

dk
U(k;−ick)|k=0. (68)

Taking into account the structure (68) of U(k; z) we find the formula

D(ε) = 〈w〉st

ε
+ A00[A′

11A00 − A′
01A10] + A01[A′

00A10 − A′
10A00]

�2
, (69)

where all Ajl and � are taken at k = z = 0, and where

A′
j l = iε

d

dk
Ajl(k;−ick)|k=0. (70)

A particularly useful representation of the derivative appearing in expression (70) can be
deduced from formulae (78) and (82) defining functions Ajl(k; z). An integration by parts
yields

A′
j l =

∫
dw

∫ w

−∞
du(u − c)

∫ u

−∞
dvwjvl exp{[S(0, v;0) − S(0,w;0)]/ε}
(v). (71)

It is quite remarkable that (71) allows us to establish a relation between the quantities A′
j l

and the stationary velocity distribution Gst(w). Indeed, using (42), we readily obtain the
equalities

∫
dw

∫ w

−∞
du exp{[S(0, v; ) − S(0,w;0)]/ε}(u − c)Gst(u)

= A01 − cA00 + 1

�
[A00A

′
01 − A01A

′
00] ≡ J01 (72)
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and ∫
dw

∫ w

−∞
du exp{[S(0, v; ) − S(0,w;0)]/ε}w(u − c)Gst(u)

= A11 − cA10 + 1

�
[A00A

′
11 − A01A

′
10] ≡ J11. (73)

Then, we find that the linear combination (A00J11 −A10J01) of integrals J11 and J01 reduces
to

A11A00 − A10A01 + 1

�

{
A00[A00A

′
11 − A01A

′
10] − A10[A00A

′
01 − A01A

′
00]

}
. (74)

The comparison of that expression with (69) leads to the compact final result

D(ε) = A00J11 − A10J01

�
. (75)

The above formula involves, via coefficients J11 and J01, averages over the stationary veloc-
ity distribution. In fact, we show in Appendix B that expression (75) follows by extending,
to the present out-of-equilibrium stationary state, the familiar Green-Kubo relation between
the diffusion coefficient and the velocity fluctuations. That important fact is one of the main
observations of the present study.

When ε → 0, the behaviour of D(ε) is easily infered by inserting the small-ε expansion
(47) of the stationary velocity distribution Gst(w) into formula (75). We find that D(ε) goes
to conductivity σ (49) as quoted above, with a negative ε2-correction. When ε → ∞, we
can use the large-ε form (51) of Gst(w) for evaluating coefficients J11 and J01. Using also
the corresponding behaviours of coefficients A00 and A10, we eventually obtain that D(ε)

goes to the finite value

D∞ = 
3(1/3) − 9
(1/3)
(2/3) + 6
3(2/3)

2
3(1/3)

 0.0384. (76)

The external field dependence of the diffusion coefficient D(ε) is shown in Fig. 5.
The expansion (66) of zhy(k) can be pursued beyond the k2-diffusion term, by expanding

function U(k; z) in double entire series with respect to z and k. According to the integral
expression of functions Ajl(k; z) derived in Appendix C, all coefficients of those double
series are finite. This implies that the hydrodynamic root zhy(k) of (64) can be formally
represented by an entire series in k, namely

zhy(k) =
∞∑

n=1

αnk
n,

with α1 = −ic and α2 = −D(ε). Coefficient αn (n ≥ 3) can be straightforwardly computed
once lowest-order coefficients αp with 1 ≤ p ≤ n − 1 have been determined. As shown by
that calculation, all coefficients are obviously finite. Therefore, and similarly to what hap-
pens in the Maxwell case, only positive integer powers of k appear in the small-k expansion
of zhy(k). Now, we are not able to determine the radius of convergence of that expansion,
so we cannot conclude about the analyticity of function zhy(k). However, we notice that,
contrarily to the Maxwell case, the integrals defining Ajl(k; z) remain well-defined for any
complex value of k, as soon as ε �= 0 (see Appendix C). This suggests that zhy(k) might be
an analytic function of k at k = 0, except for ε = 0, in which case k = 0 should be a singular
point.
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Fig. 5 Diffusion coefficient
D(ε) as a function of ε. The
dotted line represents the
constant asymptotic value D∞

4 Concluding Comments

The idea of this work was to perform a detailed study of the approach to an out-of-
equilibrium stationary state, by considering systems for which analytic solutions can be
derived. To this end we solved, within Boltzmann’s kinetic theory, the one-dimensional ini-
tial value problem for the distribution of a particle accelerated by a constant external field
and suffering elastic collisions with thermalized bath particles. Our exact results for the
Maxwell model and for the very hard particle model support the general picture mentioned
in the Introduction:

• a uniform exponentially fast relaxation of the velocity distribution
• diffusive spreading in space in the reference system moving with stationary flow
• equality between the diffusion coefficient appearing in the hydrodynamic mode and the

one given by the generalized Green-Kubo formula

Although both models display the same phenomena listed above, the variations of the
respective quantities of interest with respect to ε are different. First we notice that, as far
as deformations of the equilibrium Maxwell distribution are concerned, the external field is
much less efficient for very hard particles. This is well illustrated by comparing Figs. 1 and 2:
for the Maxwell system, a significative deformation of 
 is found for ε = 5, while for the
very-hard particle model a similar deformation is observed for ε = 100. This can be easily
interpreted as follows. The collision frequency for very hard particles becomes much larger
than its Maxwell gas counterpart when the external field increases, so it costs more energy
to maintain a stationary distribution far from the equilibrium one. That mechanism also
explains various related observations. For instance, the large-velocity behaviour of Gst(w)

is identical to the equilibrium Gaussian for very hard particles, while it takes an exponential
form in the Maxwell gas. Also, the average current 〈w〉st increases more slowly when ε →
∞ for very hard particles, and the corresponding relaxation time λ−1(ε) vanishes instead of
remaining constant for the Maxwell gas.

Among the above phenomena, the emergence of a symmetric diffusion process in the
moving reference frame is quite remarkable. In such a frame, there is some kind of can-
cellation between the action of the external field and the effects of collisions induced by
the counterflow of bath particles with velocity u∗

bath = −〈v〉st. The corresponding diffusion
coefficient D(ε) increases with ε for the Maxwell gas (case γ = 0), while it decreases and
saturates to a finite value for very hard particles (case γ = 2). Therefore, beyond the previ-
ous cancellation, it seems that the large number of collisions for γ = 2 shrink equilibrium
fluctuations. On the contrary, for γ = 0, since D(ε) diverges when ε → ∞, the residual
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effect of collisions in the reference frame seems to vanish and particles tend to behave as if
they were free.

We expect that the same qualitative picture should be valid in the hard rod case which
corresponds to the intermediate value γ = 1 of the exponent γ in (1). The quantitative
behaviours should interpolate between those described for γ = 0 and γ = 2. For instance,
the stationary distribution Gst(w) computed in Ref. [1] displays a large-velocity asymptotic
behaviour which is indeed intermediary between those derived here for γ = 0 and γ = 2.
Also, the average current 〈v〉st is of order ε1/2 for ε large, which lies between the ε- and
ε1/3-behaviours found for γ = 0 and γ = 2 respectively. Notice that the ε1/3-behaviour
for γ = 2 can be retrieved within a selfconsistent argument, which uses in an essential
way the existence of the velocity scale related to the particle-particle interaction. Whereas
the thermal velocity scale becomes irrelevant when ε → ∞, the interaction scale remains
important. In the case of hard rods such an interaction scale does not show in the kinetic
equation, and the unique combination of parameters having the dimension of velocity is√

a/ρ, which does provide a different strong field behaviour of 〈v〉st with order ε1/2.

Appendix A: Solution of the Kinetic Equation for Very Hard Particles

Applying to (30) Fourier and Laplace transformations, we find

ε
∂

∂w
F̃ (k,w; z) + (z + 1 + ikw + w2)F̃ (k,w; z)

= F̂in(k,w) + [M̃2(k; z) − 2wM̃1(k; z) + w2M̃0(k; z)]
(w) (77)

where M̃j (k; z) is the double Fourier-Laplace transform of the j th-moment Mj(x; τ) de-
fined in expression (31), while F̂in(k,w) is the spatial Fourier transform of the initial con-
dition Fin(x,w) = F(x,w;0). The first order equation (77) can be rewritten in an integral
form with the use of function

S(k,w; z) = w(z + 1) + 1

3
w3 + ik

w2

2
, (78)

namely

εF̃ (k,w; z) =
∫ w

−∞
du exp{[S(k,u; z) − S(k,w; z)]/ε}{F̂in(k,u)

+ [M̃2(k; z) − 2uM̃1(k; z) + u2M̃0(k; z)]
(u)}. (79)

Using then the relation
[
ε

∂

∂u
+ εu − (z + 1) − iku − u2

]
exp{S(k,u; z)/ε}
(u) = 0

to evaluate the term involving u2 in the right hand side of (79), we eventually find the more
convenient integral equation

εF̃ (k,w; z)
= εM̃0(k; z)
(w) +

∫ w

−∞
du exp{[S(k,u; z) − S(k,w; z)]/ε}

× {F̂in(k,u) + [M̃2(k; z) − 2uM̃1(k; z) + (εu − iku − z − 1)M̃0(k; z)]
(u)}. (80)
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Equation (80) has to be considered together with the continuity equation

zM̃0(k; z) + ikM̃1(k; z) = M̂0(k;0). (81)

In order to determine the unknown functions M̃j (k; z) (j = 0,1,2), we complete (81) with
the zeroth and the first moments of (80). In the resulting system of linear equations, the
integrals

Ajl(k; z) =
∫

dw

∫ w

−∞
duwjul exp{[S(k,u; z) − S(k,w; z)]/ε}
(u) (82)

and

A
(in)
j l (k; z) =

∫
dw

∫ w

−∞
duwjul exp{[S(k,u; z) − S(k,w; z)]/ε}F̂in(k,u) (83)

appear. That system reads

0 = A
(in)

00 + [M̃2 − (z + 1)M̃0]A00 + [(ε − ik)M̃0 − 2M̃1]A01,

εM̃1 = A
(in)

10 + [M̃2 − (z + 1)M̃0]A10 + [(ε − ik)M̃0 − 2M̃1]A11.
(84)

The explicit solution for the zeroth moment reads

M̃0 = �M̂0(k;0) − ik[A(in)

10 A00 − A10A
(in)

00 ]
z� + (k2 + iεk)(A11A00 − A10A01)

, (85)

where

� = εA00 + 2(A11A00 − A10A01). (86)

The formula for the first moment follows directly from the continuity equation (81), and
then M̃2 can be derived directly from (84). The insertion of the formulae for the first three
moments into the relation (80) yields the complete solution for the distribution F̃ (k,w; z)
for any initial condition.

Appendix B: Evaluation of the Diffusion Coefficient via Green-Kubo Theory

B.1 Velocity Autocorrelation Function of the Maxwell Gas

In order to evaluate the velocity autocorrelation function, we use the integral representation


(τ) = 〈[w(τ) − 〈w〉st][w(0) − 〈w〉st]〉st =
∫

dwwG(w; τ), (87)

where G(w; τ) is the solution of kinetic equation (12) corresponding to the initial condition

Gin(w) = (w − 〈w〉st)Gst(w) = (w − ε)Gst(w). (88)

Here we find

N0 =
∫

dwG(w; τ) =
∫

dwG(w;0) = 0, (89)
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so that (12) takes a particularly simple form

G(w; τ) = e−τGin(w − ετ) = e−τ (w − ε)Gst(w − ετ). (90)

Using then the explicit form (14) of Gst, we obtain


(τ) =
∫

dwwe−τ (w − ε)

∫ ∞

0
dηe−η
(w − εη) = e−τ (1 + ε2), (91)

which leads to the simple formula for the diffusion coefficient

D(ε) =
∫ ∞

0
dτ
(τ) = 1 + ε2. (92)

B.2 Velocity Autocorrelation Function of Very Hard Particles

Similarly to the Maxwell gas case, in order to determine the autocorrelation function 
(τ),
we first have to solve kinetic equation (32) satisfied by the velocity distribution with the ini-
tial condition G(w;0) = Gin(w) = (w − 〈w〉st)Gst(w), and afterwards we have to evaluate
the first moment of that solution ∫

dwwG(w; τ) = 
(τ).

Since norm N0(τ ) vanishes, kinetic equation (32) becomes
(

∂

∂τ
+ ε

∂

∂w

)
G(w; τ) = [N2(τ ) − 2wN1(τ )]
(w) − (w2 + 1)G(w; τ). (93)

That equation can be rewritten in Laplace world as

εG̃(w; z) =
∫ w

−∞
du exp {[S(u; z) − S(w; z)]/ε}

×
{
(u − 〈w〉st)Gst(u) + [Ñ2(z) − 2Ñ1(z)u]
(u)

}
. (94)

The zeroth and the first moments of (94) provide the system of equations

0 = J01 + Ñ2A00 − 2Ñ1A01,

εÑ1 = J11 + Ñ2A10 − 2Ñ1A11,
(95)

where

J01 =
∫

dw

∫ w

−∞
du exp {[S(u; z) − S(w; z)]/ε} (u − 〈w〉st)Gst(u) (96)

and

J11 =
∫

dw

∫ w

−∞
du exp {[S(u; z) − S(w; z)]/ε}w(u − 〈w〉st)Gst(u). (97)

The first moment Ñ1(z) = 
̃(z) is found to be


̃(z) = A00(z)J11(z) − A10(z)J01(z)

εA00(z) + 2[A00(z)A11(z) − A10(z)A01(z)] , (98)
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where the shorthand notation Ajl(z) ≡ Ajl(0; z) has been used. The value of 
̃(z) at z = 0
yields the diffusion coefficient D(ε). We find here the same formula as that derived from
the analysis of the hydrodynamic pole (see expression (75)).

Appendix C: Useful Integral Expressions for Functions Arising in the Case of Very
Hard Particles

In the integral representation (82) of function Ajl(k; z), it is useful to make the variable
change u = w − εy. This leads to a double integral of the form

∫
dw

∫ ∞

0
dyIjl(w,y).

Thanks to the fast decay of integrand Ijl(w,y) in any direction of plane (w,y), the integrals
upon w and y can be exchanged. Then in the integral upon w, we make the variable change
w → η with

η = (1 + 2y)1/2

(
w − y(1 + y)

1 + 2y
+ iky

ε(1 + 2y)

)
.

This provides

Ajl(k; z) = ε√
2π

∫ ∞

0
dy

1

(1 + 2y)1/2

× exp

(
−(z + 1)y − ε2 y3(2 + y)

6(1 + 2y)
− k2y2

2(1 + 2y)
− ikεy2(1 + y)

1 + 2y

)

×
∫

dη exp

(
−η2

2

)(
η

1 + 2y)1/2
+ εy(1 + y)

1 + 2y
− iky

1 + 2y

)j

×
(

η

1 + 2y)1/2
− εy2

1 + 2y
− iky

1 + 2y

)l

. (99)

The integral upon η can be easily performed, thanks to the simple dependence of the corre-
sponding integrand with respect to η, namely a Gaussian times a polynomial. The result is
a combination of algebraic functions of y with coefficients which reduce to positive integer
powers of k. Thus, the remaining integral upon y does converge for any complex value of k

and z, thanks to the presence of factor

exp

(
−ε2 y3(2 + y)

6(1 + 2y)

)

which ensures a fast integrable decay of the integrand when y → ∞. That fast decay guar-
antees that Ajl(k; z) is an entire function of both complex variables k and z.

Integral representation (99) can be specified to k = 0, j = 0,1 and l = 0,1. This provides
useful expressions for functions A00(z), A10(z), A01(z) and A11(z) which are analogous to
formula (54) for �(z). That formula is derived as follows. First, we compute d�/dz from
expression (86) specified to k = 0 in terms of functions Ajl(z) and of their derivatives with
respect to z. Using the integral representations (82), such derivatives are then expressed in
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terms of the Ajl(z)’s by combining differentiation under the integral sign and integration by
parts. This allows us to infer that �(z) is the solution of the first order differential equation

d�

dz
− � = 3ε

dA00

dz
− εA00, (100)

with the boundary condition at infinity �(z) → 0 when z = x → ∞. A straightforward
application of the constant-variation method leads to

�(z) = 3εA00(z) − 2ε exp(z)

∫ ∞

z

dz′ exp(−z′)A00(z
′). (101)

Eventually, we insert the above integral representation of A00(z
′) into expression (101), and

we exchange integrals upon z′ and y thanks to absolute convergence. Since the dependence
in z′ reduces to simple exponential factor exp(−z′(1 + y)), the integral upon z′ is readily
done, and this eventually leads to formula (54).
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